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Abstract

Transient temperature solutions in plates are derived for heating conditions varying as time to an integer power at a surface. The
powers include 0, 1, 2 and 3; the last of which is useful for cubic splines. Boundary conditions of the first, second and third kinds
are treated at both surfaces with the non-homogeneity at x = 0. As the power increases by one, an additional quasi-steady summation
term appears in the analytical solution. Algebraic forms for these summations are derived in a systematic way. Extensive tables are given
along with an example.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Realistic applications in heat conduction usually have
transient variations at the boundaries. Many examples
can be cited such as in the ignition of a rocket engine,
heating of brake drums of cars and trucks during braking,
and cooking of foods. However, few exact solutions for
transient boundary conditions exist. Most advanced heat
conduction books instead concentrate on exact solutions
for constant boundary conditions and recommend using
those solutions with Duhamel’s integral [1] to obtain solu-
tions for time-variable boundary conditions. Other meth-
ods, such as employing Green’s functions, are also
recommended [2]. For one-dimensional problems in plates,
the solutions for constant boundary conditions can be
obtained using the methods of the separation of variables
(SOV) or the Laplace transform [1,2]. The SOV solutions
tend to be more convenient to manipulate because the tem-
poral and spatial dependences are independent, unlike
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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those found using Laplace transforms. In the SOV solution
of heat conduction problems with heat flux (or other)
boundary conditions, several time-independent but space-
dependent summations may be obtained, some of which
may converge very slowly. Instead of these infinite-series
summations, algebraic identities, if available, are preferred.
However, these identities are not directly obtained using
either Duhamel’s integral or using Green’s functions. The
primary objective of this paper is to provide a systematic
method for determining these algebraic identities for the
steady- or quasi-steady state summations that arise from
boundary conditions varying as time to an integer power;
the integers considered here are 0, 1, 2 and 3.

A number of methods of eliminating the slowly converg-
ing series are possible. Some of these are given in this
paper. By removing these summations, more insight into
the solution is possible. (Ref. [3] gives methods to simplify
summations in 2D heat-conduction problems with constant
boundary conditions. See also [4].) Another motivation to
develop these solutions is for approximating time-variable
conditions with cubic B-splines [5], which are used in the
solution of the inverse heat conduction problem [6].
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Nomenclature

AXIJ,m constant associated with mth eigenfunction
B boundary condition modifier in numbering sys-

tem
Bij Biot number (=hjL/k, j = 1, 2)
Bp(x) Bernoulli polynomial of order p

CðiÞXIJ ;m constant of integration
Ep(x) Euler polynomial of order p

GXIJ Green’s function for rectangular plate with I

and J boundary conditions
hi heat transfer coefficient on ith surface
imerfc mth integral of the complementary error func-

tion
I indication of boundary condition at x = 0, 1 –

first kind, 2 – second kind, 3 – third kind
IISXIJ,i twice integrated summation of eigenfunctions

(defined in Eq. (20c))
J indication of boundary condition at x = 1, 1 –

first kind, 2 – second kind, 3 – third kind
k thermal conductivity
L thickness of slab
Nm mth norm of Xm(x)
n exponent on time for boundary condition (i.e.,

T / tn and q / tn)

q0 boundary heat flux
t time
tN characteristic time
SðiÞXIJ summation of eigenfunctions (Defined in Eqs.

(15a) and (15e))
T scaled temperaturebT temperaturebT1 ambient temperature
u cotime (=t � s)
X eigenfunction and notation for Cartesian coor-

dinate
XXIJ,m(x) mth eigenfunction
x scaled length (¼ x̂=LÞ
x̂ length

Greek letters

a thermal diffusivity
bXIJ,m mth eigenvalue
DXIJ constant of integration (DX22 = 1, DXIJ = 0 for

other values of I and J)
C(x) Gamma function
s dummy time variable of integration
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The many solutions given herein have varied uses. One
is to provide solutions that can be used in verification, that
is, to provide solutions with which the accuracy of approx-
imate methods, such as finite difference and finite element
solutions, can be investigated [7–11]. Another is to provide
relatively simple forms of exact solutions that can be used
in estimating parameters [12,13].

Many different transient heat conduction problems are
discussed in this paper. In order to identify clearly the dif-
ferent cases, a numbering system [2] is briefly described and
then used. For 1D Cartesian problems the symbol starts
with X followed by two numbers, the first is for the bound-
ary condition at x̂ ¼ 0 and the second for the boundary
condition at x̂ ¼ L. A prescribed temperature, bT , at a
boundary is denoted by a 1. A prescribed heat flux, q, at
a boundary is denoted by a 2. A prescribed ambient tem-
perature, bT 1, at a boundary is denoted by a 3. For exam-
ple, a plate with a prescribed heat flux at x̂ ¼ 0 and a
temperature condition at x̂ ¼ L is denoted X21. An addi-
tional type of boundary condition is indicated by a 0; a
semi-finite body with a prescribed temperature at x̂ ¼ 0 is
denoted X10.

Boundary condition modifiers are used to describe the
boundary conditions more fully; this is done by following
the X21, for example, by B10, where the B denotes bound-
ary modifier, the 1 denotes a steady boundary condition at
x̂ ¼0, and the 0 denotes a homogeneous boundary condi-
tion at x̂ ¼ L. In this paper, the x̂ ¼ 0 conditions for bT , q

or bT 1 vary as t̂n, where n = 0, 1, 2 or 3. For the n = 1 con-
dition, a 2 follows B. For higher degree variations such as
quadratic or cubic, 3n follows B with (n = 2 or 3) given at
the end of the notation. Finally, the initial condition is
denoted with a T followed by a 0 for a zero initial condition
or a 1 for a constant, non-zero initial condition. Thus, for
example, the notation X21B10T0 denotes a plate with a
uniform (non-zero) heat flux at x̂ ¼ 0 and zero temperature
at x̂ ¼ L and an initial temperature of zero. Also, a general
series of cases with n = 0, 1, 2 and 3 is denoted XIJB3n0T0
(n = 0, 1, 2, 3).

The literature is limited in regards to transient heat con-
duction in finite plates with boundary conditions that vary
as a power of time. Possibly the greatest resource for solu-
tions is given in Carslaw and Jaeger [14]. Page 63 of [14]
gives solutions for the X10B3nT0 (n = 1/2, 1, 3/2, . . .) cases,
where the surface temperature is bT 0ð̂t=̂t1Þn. On page 77
solutions are given for a semi-infinite body for a heat flux
given by �kobT =ox̂ð0; t̂Þ ¼ q̂0ð̂t=̂t1Þn for n = �1/2, 0, 1/2,
1, . . . where k is thermal conductivity. For these values of
n, solutions are given by

bT ðx̂; t̂Þ ¼ q̂0

k
22nþ1Cðnþ 1Þ t̂

t̂1

� �n

ðâtÞ1=2i2nþ1erfc
x̂ffiffiffiffiffiffiffi
4ât
p
� �

ð1aÞ

where a is the thermal diffusivity. At x̂ ¼ 0, the tempera-
tures are

bT ð0; t̂Þ ¼ q0

k
Cðnþ 1Þ

Cðnþ 3=2Þ
t̂
t̂1

� �n

ðâtÞ1=2 ð1bÞ
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On pages 113 and 114 of [14], plate solutions are given for a
time-variable heat flux at x̂ ¼ L; the notations are
X22B03nT0 (n = �1/2,0,1/2,1 , . . . ) and X12B03nT0
(n = �1/2,0,1/2,1, . . . ), where the first case is insulated at
x̂ = 0 and the second case has a zero temperature at
x̂ ¼ 0; in both cases the heat flux at x̂ ¼ L is given by
kobT =ox̂ðL; t̂Þ ¼ q0ð̂t=̂t1Þn and both solutions are given in
terms of error functions. Solutions for plates in terms of er-
ror functions require more terms as time is increased and
do not yield steady or quasi-steady components in the solu-
tions. Carslaw and Jaeger [14, p. 127] have a solution for a
linearly increasing bT 1 (denoted by X23B02T0) that has an
algebraic form for a quasi-steady term rather than a series
form.

Ozisik [1] solves several problems having a linear time
variation of the boundary condition. On page 208, Eq.
(5-47) is a SOV-type solution for the X22B20T0 problem
which is obtained using Duhamel’s theorem; it has two ser-
ies, one of which converges slowly. These series can be
replaced by algebraic forms given herein. On pages 516–
518, Ozisik [1] considers the X21B02T0 problem that con-
tains two summations that are given algebraic expressions.
One summation is evaluated on page 565 using the solution
of the related X21B00T1 problem. The other summation is
evaluated using a quadratic initial temperature.

Myers [15] discusses some problems with a boundary
condition varying linearly with time. A solution to the
X11B20T0 problem based on Duhamel’s theorem is given
[15, p. 161–163]. Two different forms of the solution are
given, one of which has a single series that can be replaced
by an algebraic form and the other has two such series.
Myers [15, p. 112 and 113] shows how the quasi-steady ser-
ies in the X22B10T0 problem can be replaced by an alge-
braic form.

Luikov [16] treats the problem of a linearly varying
ambient temperature problem (X23B02T0) in two different
ways. On pages 300–303, starting with the Laplace trans-
form and then taking the inverse Laplace transform in a
form suitable for large times, an algebraic form is directly
obtained for the quasi-steady component of the solution.
However, when the same problem is solved on page 347
using Duhamel’s theorem, a quasi-steady state series is
obtained, for which Luikov gives an algebraic expression
and states that ‘‘a special proof is needed” to obtain it.

Polyanin [17] provides many solutions, including 2D
and 3D geometries, in symbolic form using Green’s func-
tions. However, the solutions are in terms of summations
that may converge slowly. Many of these summations for
1D heat conduction in plates with integer-power variations
with respect to time can be expressed in terms of the alge-
braic forms given herein.

Although time-variable boundary conditions are treated
in the references discussed above, few solutions are given
and a general method is not given by which to replace
the ‘‘steady-state or quasi-steady” series with algebraic
forms. No explicit solutions are given for variations of
the ambient temperature greater than the first power of
time. For power variation of the heat flux at a surface,
solutions are given for many different powers, but the solu-
tions [14] are in terms of error functions. These error func-
tion solutions require more terms for evaluation as time
increases and do not exhibit the underlying quasi-steady
state behaviors.

The objective of this paper is to present a general
method for deriving algebraic relations for the summation
of some series. The method is demonstrated for boundary
conditions at x̂ ¼ 0 that vary as integer powers of time
(XIJB3n0T0 (n = 0, 1, 2 or 3)) for linear (n = 1), quadratic
(n = 2) and cubic (n = 3) variations. The boundary condi-
tions of the first kind (I or J = 1), second kind (I or
J = 2) and third kind (I or J = 3) are treated.

Section 2 presents the problem statement, while Section
3 gives a general solution. Section 4 provides solutions for
particular boundary conditions and Section 5 presents
some numerical and graphical results, followed by Section
6, with a summary and some conclusions.

2. Problem statement

Consider a transient, 1D problem in a plate which has a
heat flux proportional to t̂n for n = 0, 1, 2 and 3 time at
x̂ ¼ 0 and insulated at x̂ ¼ L. The problem is denoted
X22B3n0T0 (n = 0, 1, 2 and 3) and is described mathemat-
ically as

o2bT ðnÞ
ox̂2

¼ 1

a
obT ðnÞ
ôt

; 0 < x̂ < L; t̂ > 0 ð2Þ

� k
obT ðnÞ
obx ð0; t̂Þ ¼ q0

t̂
t̂N

� �n

; n ¼ 0; 1; 2 or 3 ð3aÞ

obT ðnÞ
ox̂
ðL; t̂Þ ¼ 0 ð3bÞbT ðnÞðx̂; 0Þ ¼ bT i ð3cÞ

The superscript on the temperature denotes that the solu-
tion is for the power of n in the boundary condition at
x̂ ¼ 0 which is given by Eq. (3a). The time t̂N is an arbitrary
nominal time chosen to make the solution dimensionless.

For clarity only one set of boundary conditions are dis-
played in Eqs. (3a) and (3b), but three different conditions
(first, second and third kinds) are possible both at x̂ ¼ 0
and x̂ ¼ bL. A total of nine cases explicitly treated herein
but others can be found by letting x̂! L� x̂. The surface
temperature at x̂ ¼ 0 can be proportional to an integer
power of time and the temperature rise of bT s � bT i such as

bT ð0; t̂Þ ¼ ðbT s � bT iÞ
t̂

t̂N

� �n

þ bT i ð4aÞ

The boundary convective condition has an ambient tem-
perature that varies as t̂n

�k
obT
ox̂
ð0; t̂Þ ¼ h1 ðbT 1 � bT iÞ

t̂
t̂N

� �n

� ðbT ð0; t̂Þ � bT iÞ
� �

ð4bÞ
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The three boundary conditions at x̂ ¼ 0 are then given by
Eqs. (3b), (4a) and (4b). Analogous conditions to Eqs.
(4a) and (4b) for x̂ ¼ L arebT ðL; t̂Þ ¼ bT i ð5aÞ

� k
obT
ox̂
ðL; t̂Þ ¼ h2

bT ðL; t̂Þ � bT i

� �
ð5bÞ

By subtracting the initial temperature bT i, Eqs. (5a) and
(5b) become homogeneous.

For conciseness in the development below, the following
dimensionless quantities are defined for the heat flux
boundary condition problem described by Eqs. (2) and
(3a)–(3c),

x ¼ x̂
L

ð6aÞ

t ¼ ât

L2
ð6bÞ

T ðnÞX 2J ðx; tÞ ¼
bT ðnÞðx̂; t̂Þ � bT i

ðq0L=kÞðL2=ðât1ÞÞn
ð6cÞ

Then Eqs. (2) and (3a)–(3c) become (with the subscript X2J

on the temperature omitted)

o
2T ðnÞ

ox2
¼ oT ðnÞ

ot
; t > 0; 0 < x < 1 ð6dÞ

� oT ðnÞ

ox
ð0; tÞ ¼ tn ð6eÞ

oT ðnÞ

ox
ð1; tÞ ¼ 0 ð6fÞ

T ðnÞðx; 0Þ ¼ 0 ð6gÞ

For boundary conditions of the first and third kinds at
x = 0, the dimensionless temperatures are defined respec-
tively as

T ðnÞX 1J ðx; tÞ �
bT ðx̂; t̂Þ � bT ibT s � bT i

� �
ðL2=âtNÞn

ð7aÞ

T ðnÞX 3J ðx; tÞ �
bT ðx̂; t̂Þ � bT i

ðbT 1 � bT iÞðL2=âtNÞn
ð7bÞ

(The subscripts on the temperature may be omitted in some
of the following.) Then the dimensionless boundary condi-
tions for the first and third kinds at x = 0 are

T ðnÞX 1J ð0; tÞ ¼ tn ð8aÞ

� oT ðnÞX 3J

ox
ð0; tÞ ¼ Bi1ðtn � T ðnÞX 3J ð0; tÞÞ ð8bÞ

where the Biot number is Bi1 = h1L/k; for x = 1, the
dimensionless boundary conditions are

T ðnÞXI1ð1; tÞ ¼ 0 ð9aÞ

� oT ðnÞXI3

ox
ð1; tÞ ¼ Bi2T ðnÞXI3ð1; tÞ ð9bÞ

where Bi2 = h2L/k.
3. General solution for XIJ series of problems

A solution of the problem X22B3n0T0, (given by Eqs.
(6d)–(6g)) using Green’s functions is (or similarly using
Duhamel’s integral)

T ðnÞX 22ðx; tÞ ¼
Z t

s¼0

snGX 22ðx; 0; t � sÞds; n ¼ 0; 1; 2 or 3

ð10aÞ

where the boundary condition at x = 0 varies as a power of
time. The boundary condition at x = 0 is the second kind
(given heat flux). For the boundary condition of the third
kind at x = 0 and Jth kind at x = 1, the solution in terms
of Green’s functions, denoted X3JB3n0T0, can be written
as

T ðnÞX 3J ðx; tÞ ¼ Bi1

Z t

s¼0

snGX 3J ðx; 0; t � sÞds ð10bÞ

The solution given by Eq. (10a) can be modified to treat the
boundary condition of the first kind (denoted X1JB3n0T0)
by replacing

GX 22ðx; 0; t � sÞ by
oGX 12

ox0
ðx; 0; t � sÞ ð11Þ

(The notation for the Green’s function is G(x,x0, t � s),
where the point of interest is at (x, t) and the instanta-
neous source is at (x0,s).) Notice the ‘‘1” subscript on the
second G; it denotes a boundary condition of the first
kind.

Using the long cotime (which we define as t � s) form of
the transient heat conduction Green’s function in a plate,
we can write [2]

GXIJ ðx; x0; t � sÞ ¼ DXIJ þ
X1
m¼1

X XIJ ;mðxÞX XIJ ;mðx0Þ
NXIJ ;m

e�b2
XIJ ;mðt�sÞ

ð12Þ

where XXIJ, m(x), bXIJ,m and NXIJ,m are the eigenfunctions,
eigenvalues and norms, respectively. Eq. (12) is scaled and
can be obtained by letting the dimensional Green’s func-
tion have a thermal diffusivity and length L both equal to
1. If the boundary conditions are both of the second kind
at both x = 0 and 1 (that is, the X22 case), then
DX22 = 1, otherwise DXIJ = 0, for I = J 6¼ 2. Restricting
the boundary condition at x = 0 to be of the second kind
(or third kind if Bi1 is inserted before the integral sign as
in Eq. (10b)) and introducing Eq. (12) into a general form
of Eq. (10a) gives

T ðnÞXIJ ðx; tÞ ¼ DXIJ
tnþ1

nþ 1
þ
X1
m¼1

X XIJ ;mðxÞX XIJ ;mð0Þ
NXIJ ;m

�
Z t

s¼0

sn e�b2
XIJ ;mðt�sÞds;

I ¼ 2 or 3 ð13Þ
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The integrals over s for n = 0, 1, 2 and 3 areZ t

s¼0

e�b2
XIJ ;mðt�sÞds ¼ 1

b2
XIJ ;m

� e�b2
XIJ ;mt

b2
XIJ ;m

ð14aÞ

Z t

s¼0

se�b2
XIJ ;mðt�sÞds ¼ 1

b2
XIJ ;m

t � 1

b4
XIJ ;m

þ e�b2
XIJ ;mt

b4
XIJ ;m

ð14bÞ

Z t

s¼0

s2 e�b2
XIJ ;mðt�sÞds ¼ 1

b2
XIJ ;m

t2 � 2

b4
XIJ ;m

t þ 2

b6
XIJ ;m

� e�b2
XIJ ;mt

b6
XIJ ;m

ð14cÞZ t

s¼0

s3 e�b2
XIJ ;mðt�sÞds ¼ 1

b2
XIJ ;m

t3 � 3

b4
XIJ ;m

t2 þ 6

b6
XIJ ;m

t

� 6

b8
XIJ ;m

þ e�b2
XIJ ;mt

b8
XIJ ;m

ð14dÞ

This type of integral is present for boundary conditions of
the first, second or third kinds at the x = 0 boundary. No-
tice that the repetition of 1=b2

XIJ ;m and similar terms in these
equations; these terms are proportional to 1=b2ðiþ1Þ

XIJ ;m for
i = 0, 1, 2 and 3. The last term for each of Eqs. (14a)–
(14d) is a decaying exponential. The second to last term
contributes a steady-state component while the other terms
contribute to the temperature increase as a power of time.

The primary objective is to replace each summation in
Eq. (13) and implied by Eqs. (14a)–(14d) with an algebraic
form. The first summation implied in Eqs. (14a)–(14d) can
be written (with the t-dependence omitted) as

Sð0ÞXIJ ðxÞ ¼
X1
m¼1

AXIJ ;mX XIJ ;mðxÞ ð15aÞ

where the coefficient AXIJ,m is determined by comparison of
Eqs. (13) and (15a). For example, for the boundary condi-
tion of the second kind at x = 0, XX2J,m(x) = cos(bX2J,mx)
(see Table 1, sixth row) and thus AX2J,m is given by (with
a division by 2 added for convenience, since many norms
are equal to 1/2)

AX 2J ;m �
X X 2J ;mð0Þ

2NX 2J ;mb2
X 2J ;m

¼ cosð0Þ
2N X 2J ;mb2

X 2J ;m

¼ 1

2N X 2J ;mb2
X 2J ;m

ð15bÞ

For boundary conditions of the 1st kind at x = 0, XX1J,m

(x) = sin(bX1Jx) and AX1J,m is defined by

AX 1J ;m �
dX X 1J ;mðx0Þ=dx0jx0¼0

2NX 1J ;mb2
X 1J ;m

¼ 1

2NX 1J ;mbX 1J ;m
ð15cÞ

For boundary conditions of the third kind at both bound-
aries, XX33,m(x) = Bi1sin(bX33x) + bX33cos(bX33x) and Am is
defined by

AX 33;m �
Bi1X X 33;mð0Þ
2NX 33;mb2

X 33;m

¼ Bi1

2NX 33;mbX 33;m

¼
Bi1=bX 33;m

ðb2
X 33;m þ Bi1Þ½1þ Bi2=ðb2

X 33;m þ Bi2Þ� þ Bi1

ð15dÞ
A more general form of the summation than in Eq. (15a) is
given by

SðiÞXIJ ðxÞ ¼
X1
m¼1

AXIJ ;m
X XIJ ;mðxÞ

b2i
XIJ ;m

; i ¼ 0; 1; 2 or 3 ð15eÞ

The boundary conditions can be of the first, second or
third kinds at either boundary (that is, I and J = 1, 2 or
3), but the solutions are restricted herein to non-homoge-
neous conditions only at x = 0.

Using the S functions just defined and Eqs. (14a)–(14d)
in Eq. (13), the temperatures for I, J = 1, 2 and 3 for the tn

boundary conditions (for n = 0, 1, 2, and 3) are given by

T ð0ÞXIJ ðx; tÞ ¼ DXIJ t þ 2Sð0ÞXIJ ðxÞ � 2
X1
m¼1

e�b2
XIJ ;mt AXIJ ;mX XIJ ;mðxÞ

b0
XIJ ;m

ð16aÞ

T ð1Þðx; tÞ ¼ DXIJ
t2

2
þ 2tSð0ÞXIJ ðxÞ � 2Sð1ÞXIJ ðxÞ

þ 2
X1
m¼1

e�b2
XIJ ;mt AXIJ ;mX XIJ ;mðxÞ

b2
XIJ ;m

ð16bÞ

T ð2Þðx; tÞ ¼ DXIJ
t3

3
þ 2t2Sð0ÞXIJ ðxÞ � 4tSð1ÞXIJ ðxÞ þ 4Sð2ÞXIJ ðxÞ ð16cÞ

� 4
X1
m¼1

e�b2
XIJ ;mt AXIJ ;mX XIJ ;mðxÞ

b4
XIJ ;m

T ð3Þðx; tÞ ¼ DXIJ
t4

4
þ 2t3Sð0ÞXIJ ðxÞ � 6t2Sð1ÞXIJ ðxÞ þ 12tSð2ÞXIJ ðxÞ

ð16dÞ

� 12Sð3ÞXIJ ðxÞ þ 12
X1
m¼1

e�b2
XIJ ;mt AXIJ ;mX XIJ ;mðxÞ

b6
XIJ ;m

Notice that the S functions in a given equation are repeated
in the next equation and another S function is added. For
example, Sð0ÞXIJ ðxÞ is present in each of these equations and
Sð1ÞXIJ ðxÞ is present in Eqs. (16b)–(16d). Unique S functions
are found for each set of IJ values.

Another observation is that the derivative with respect
to time of the temperature is related to the temperature by

oT ðnÞ

ot
ðx; tÞ ¼ nT n�1ðx; tÞ ð17aÞ

which leads to the solution

T ðnÞXIJ ðx; tÞ ¼ n
Z

T ðn�1Þ
XIJ ðx; tÞdt þ ð�1Þn�1n!SðnÞXIJ ; n ¼ 1; 2; . . .

ð17bÞ
These last two equations give a relation between the tem-
peratures for successive powers, and apply for the nine
cases in XIJ, I, J = 1, 2 or 3 and the four n values, for a to-
tal of 36 solutions. Eq. (17b) suggests a recursion relation
between the successive solutions.

For large times and excluding the X22 case, Eq. (16a)
becomes

T ð0ÞXIJ ðx; tÞ
���
t large

¼ T ð0ÞXIJ ðxÞ ¼ 2Sð0ÞXIJ ðxÞ ð18aÞ



Table 1
Eigenfunctions, eigenvalues and the AXIJ,m function for I and J = 1, 2 and 3

The index m is for m = 1, 2, . . ..
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This equation shows that Sð0ÞXIJ ðxÞ is one-half of the steady-
state solution. As a consequence, Sð0ÞXIJ ðxÞ is a solution of the
steady-state heat conduction equation in a plate,

d2Sð0ÞXIJ ðxÞ
dx2

¼ 0; ðn ¼ 0Þ ð18bÞ

with appropriate boundary conditions. A general solution
of Eq. (18b) (i.e., for n = 0) is

Sð0ÞXIJ ðxÞ ¼ Cð0ÞXIJ ;1xþ Cð0ÞXIJ ;2; ðn ¼ 0Þ ð18cÞ

with the constants found using the given boundary condi-
tions for the temperature problem.

For the linear-in-time variation, (i.e., n = 1 in Eq. (6d)),
the temperature for all XIJ cases (except X22) and for large
times is obtained from Eq. (16b) as
T ð1ÞXIJ ðx; tÞ
���
t large

¼ 2tSð0ÞXIJ ðxÞ � 2Sð1ÞXIJ ðxÞ ð19aÞ

Now Eq. (19a) must satisfy the transient heat conduction
equation, Eq. (6d), to yield

2t
d2Sð0ÞXIJ

dx2
� 2

d2Sð1ÞXIJ

dx2
¼ 2Sð0ÞXIJ ð19bÞ

Using Eq. (18b) causes the time-dependent term which is
the first one in Eq. (19b) to disappear. (This type of simpli-
fication also occurs as n is increased to 2 and 3.) Then Eq.
(19b) becomes

� d2Sð1ÞXIJ

dx2
¼ Sð0ÞXIJ ðxÞ ð19cÞ

which can be integrated twice to obtain
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Sð1ÞXIJ ðxÞ ¼ �
Z x

x0¼0

Z x0

x00¼0

Sð0ÞXIJ ðx00Þdx00 dx0 þ Cð1ÞXIJ ;1xþ Cð1ÞXIJ ;2

ð20aÞ

Fortuitously this equation can be extended to obtain the
recursion relation,

SðiÞXIJ ðxÞ ¼ �
Z x

x0¼0

Z x0

x00¼0

Sði�1Þ
XIJ ðx00Þdx00 dx0 þ CðiÞXIJ ;1xþ CðiÞXIJ ;2;

i ¼ 1; 2 or 3 ð20bÞ

which is valid for the eight cases: I and J = 1, 2 or 3 except
I = J = 2. Before finding the two constants in Eq. (20b),
boundary conditions must be selected. To shorten the nota-
tion, let an I before the S denote an integration with respect
to the spatial coordinate so that

IISði�1Þ
XIJ ðxÞ �

Z x

x0¼0

Z x0

x00¼0

Sði�1Þ
XIJ ðx00Þdx00 dx0 ð20cÞ

which allows Eq. (20b) to be written as

SðiÞXIJ ðxÞ ¼ �IISði�1Þ
XIJ ðxÞ þ CðiÞXIJ ;1xþ CðiÞXIJ ;2 ð20dÞ

The constants in Eq. (20d) can be considered in two
groups. The first group includes the X11, X12, X21 and
X22 cases, which are discussed in Sections 4.1 and 4.2.
For this group (including the anomalous case of X22),
the summations are known (see Appendix A) and thus
are not derived in this paper. The other five cases of X13,
X23, X31, X32 and X33 do not have known algebraic forms
for the S functions. However, the S recursion relations can
be found for all of these cases at once (with the possible
exception of the X23 case) by solving the X33 case, which
is the most general. For this reason, the most complete der-
ivation is for the X33 case, which is given in Section 4.3.
4. Algebraic solutions for the summations and temperatures

4.1. Temperature specified at x = 0, X1JB3n0T0, J = 1 or 2

Detailed solutions for the temperature varying as tn at
x = 0 surface are now discussed. The cases are denoted
X11B3n0T0 and X12B3n0T0 where n can be either 0, 1, 2
or 3. The notation for a linear variation in time at x = 0
is given in [2, p. 28] as X1JB20T0. In this paper, let us
use X1JB3n0T0 (n = 1) for the linear variation case,
X1JB3n0T0 (n = 2) for the quadratic variation, and
X1JB3n0T0 (n = 3) for the cubic variation.

Consider now the J = 1 case, which is for zero tempera-
ture at x = 1. Then the S summations defined by Eq. (15e)
can be written asf

SðiÞX 11 ¼
X1
m¼1

AX 11;m
X X 11;mðxÞ

b2i
X 11;m

¼
X1
m¼1

1

bX 11;m

sinðbX 11;mxÞ
b2i

X 11;m

¼
X1
m¼1

sinðmpxÞ
ðmpÞ2iþ1

ð21Þ
where the eigenfunctions, etc. are listed in Table 1, third
column and second through fourth rows. For i = 0, 1, 2,
3, . . ., this series is known and can be expressed in an alge-
braic form in terms of Bernoulli polynomials; see Eq. (A.2)
in Appendix A. Explicit results for i = 0, 1, 2 and 3 for Eq.
(21) are given in Table 2, column 2. For example, the tem-
perature for the X11B3n0T0 (n = 1) case using Eq. (16b)
and Table 2 is

T ð1ÞX 11ðx; tÞ ¼ 2tSð0ÞX 11ðxÞ � 2Sð1ÞX 11ðxÞ þ 2
X1
m¼1

e�ðmpÞ2 t sinðmpxÞ
ðmpÞ3

¼ tð1� xÞ � x
6
ð2� 3xþ x2Þ þ 2

X1
m¼1

e�ðmpÞ2t sinðmpxÞ
ðmpÞ3

ð22Þ

The X12 case can be similarly treated because another iden-
tity is available. In this case, analogous to Eq. (21), the
summation is

SðiÞX 12 ¼
X1
m¼1

AX 12;m
X X 12;mðxÞ

b2i
X 12;m

¼
X1
m¼1

sinððm� 1=2ÞpxÞ
ððm� 1=2ÞpÞ2iþ1

; i ¼ 0; 1; 2; . . . ð23Þ

which is related to the Euler polynomials in Eq. (A.4); the
algebraic forms are given in Table 2, column 3. For linear
variation with respect to t in the surface temperature, (case
X12B3n0T0 (n = 1)), the temperature analogous to Eq. (22)
is

T ð1ÞX 12ðx; tÞ ¼ t � x
2
ð2� xÞ þ 2

X1
m¼1

e�ðmpÞ2t sinððm� 1=2ÞpxÞ
ððm� 1=2ÞpÞ3

ð24Þ
and the n = 2 and n = 3 solutions can be similarly written
using Eqs. (16c,d) and Table 2.

For the convective boundary condition at x = 1, series
analogous to the Bernoulli and Euler polynomials are not
available, but the X13 results can be obtained from the gen-
eral case of X33. See Section 4.3.

4.2. Heat flux specified at x = 0, X2JB3n0T0, J = 1 or 2

For the X2JB3n0T0 series of cases, as the previous sub-
section, the S functions can be expressed in terms of Ber-
noulli and Euler polynomials for J = 1 or 2. The values
are given in columns 4 and 5 of Table 2. The results for
the X22B3n0T0 series are different because DX22 = 1.
Dimensionless temperatures for the X22B3n0T0 (n = 0, 1
or 2) cases are

T ð0Þðx; tÞ ¼ t þ 2� 6xþ 3x2

6
� 2

X1
m¼1

e�ðmpÞ2t cosðmpxÞ
ðmpÞ2

ð25aÞ

T ð1Þðx; tÞ ¼ t2

2
þ t

2� 6xþ 3x2

6
� ð8� 60x2 þ 60x3 � 15x4Þ

360

þ 2
X1
m¼1

e�ðmpÞ2t cosðmpxÞ
ðmpÞ4

ð25bÞ



Table 2
Algebraic forms for SðiÞXIJ ðxÞ summations for I and J = 1 and 2

Power variations are for tn (n = 0, 1, 2 and 3) for the temperature or heat flux at x = 0.
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T ð2Þðx; tÞ ¼ t3

3
þ t2 2� 6xþ 3x2

6
� t

8� 60x2 þ 60x3 � 15x4

180

þ 32� 168x2 þ 210x4 � 126x5 þ 21x6

7560

� 4
X1
m¼1

e�ðmpÞ2t cosðmpxÞ
ðmpÞ6

ð25cÞ
The X23B3n0T0 (n = 1, 2 or 3) series of cases is discussed
in the next subsection.
4.3. Ambient temperature specified at x = 0, X33Bn0T0

cases

In this subsection, the general case of the X33B3n0T0 is
derived and is the basis for also treating the X13B3n0T0,
X23B3n0T0, X31B3n0T0 and X32B3n0T0 cases. Using
Eqs. (15d) and (15e) and the XX33,m(x) function given in
Table 1, the SðiÞX 33ðxÞ summation is

SðiÞX 33ðxÞ ¼ Bi1

X1
m¼1

bX 33;m cosðbX 33;mxÞ þ Bi1 sinðbX 33;mxÞ
b2

X 33;m þ Bi2
1

� �
½1þ Bi2=ðb2

X 33;m þ Bi2
2Þ� þ Bi1

� 1

b2iþ1
X 33;m

ð26aÞ

Eq. (26a) can be used for the X1J and X3J,J = 1, 2 or 3
cases since the permissible range of Bi1 is 0 < Bi1 61.
Note that this excludes the case of Bi1 = 0 (i.e., the X2J

cases) but the case of X23 can be accommodated as

SðiÞX 23ðxÞ ¼
X1
m¼1

cosðbX 23;mxÞ
bX 23;m½1þ Bi2=ðb2

X 23;m þ Bi2
2Þ�

1

b2iþ1
X 23;m

ð26bÞ

The derivation for the X33 case starts with Eq. (20d) and
the two boundary conditions which are given in Eqs. (8b)
and (9b) and repeated here as,
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� oT ðnÞX 33

ox
ð0; tÞ ¼ Bi1ðtn � T ðnÞX 33ð0; tÞÞ; n ¼ 0; 1; 2 or 3 ð27aÞ

� oT ðnÞX 33

ox
ð1; tÞ ¼ Bi2T ðnÞX 33ð1; tÞ; n ¼ 0; 1; 2 or 3 ð27bÞ

For a constant ambient temperature condition, n = 0 in
Eq. (27a) and then tn = 1.Then the steady state tempera-
ture solution for these boundary conditions (X33B10) is

T ð0ÞðxÞ ¼ Bi1½1þ Bi2ð1� xÞ�
½Bi1 þ Bi2ð1þ Bi1Þ�

ð28Þ

Then the S function for i = 0 (1/2 of Eq. (28) as indicated
below Eq. (17a)) is

Sð0ÞX 33ðxÞ ¼
Bi1½1þ Bi2ð1� xÞ�

2½Bi1 þ Bi2ð1þ Bi1Þ�
ð29Þ

This equation is valid for all values of the Biot numbers ex-
cept Bi1 = 0. It can be used for Bi2 = 0 for which the value
of 1/2 is obtained. Hence,

Sð0ÞX 12ðxÞ ¼
1

2
ð30aÞ

Sð0ÞX 32ðxÞ ¼
1

2
ð30bÞ

(Notice the X22 case is not included.) Eq. (29) can also be
used for Bi1 ?1 to obtain

Sð0ÞX 11ðxÞ ¼
1� x

2
ð31aÞ

Sð0ÞX 13ðxÞ ¼
1þ Bi2ð1� xÞ

2ð1þ Bi2Þ
ð31bÞ

Finally, the condition of Bi2 ?1 yields

Sð0ÞX 31ðxÞ ¼
Bi1ð1� xÞ
2ð1þ Bi1Þ

ð32Þ

This covers six of the 9 cases. The three remaining cases are
X21, X22 and X23. The first two of these cases are covered
in Table 2, columns 4 and 5, third row. The X23 result is

Sð0ÞX 23ðxÞ ¼
1þ Bi2ð1� xÞ

2Bi2

ð33Þ

Recursive relations for the S-functions are now derived.
Start with Eq. (16a) (which is for n = 0) for the temperature
for large t’s and drop the DX33 = 0 term to get

T ð0ÞX 33ðx; tÞ
���
t large

¼ 2Sð0ÞX 33ðxÞ ð34Þ

Introducing this equation in Eqs. (27a,b) for n = 0 gives

� 2
dSð0ÞX 33

dx
ð0Þ ¼ Bi1ð1� 2Sð0ÞX 33ð0ÞÞ ð35aÞ

� 2
dSð0ÞX 33

dx
ð1Þ ¼ Bi22Sð0ÞX 33ð1Þ ð35bÞ

Now use Eq. (16b) (which is for n = 1) for large t to get

T ð1ÞX 33ðx; tÞ
���
t large

¼ 2tSð0ÞX 33ðxÞ � 2Sð1ÞX 33ðxÞ ð36Þ

Introduce Eq. (36) into Eq. (27a) with n = 1 to find
�2t
dSð0ÞX 33

dx
ð0Þ þ 2

dSð1ÞX 33

dx
ð0Þ ¼ Bi1ðt � 2tSð0ÞX 33ð0Þ þ 2Sð1ÞX 33ð0ÞÞ

ð37aÞ

Re-arrange this equation so that the function of t is on the
right side,

2
dSð1ÞX 33

dx
ð0Þ � 2Bi1Sð1ÞX 33ð0Þ ¼ t Bi1ð1� 2Sð0ÞX 33ð0ÞÞ þ 2

dSð0ÞX 33

dx
ð0Þ

 !
ð37bÞ

Using Eqs. (35b) and (35b) shows that the right side of this
equation is equal to zero. Consequently Eq. (37b) can be
written as

dSð1ÞX 33

dx
ð0Þ ¼ Bi1Sð1ÞX 33ð0Þ ð38Þ

Repeat the same procedure by introducing Eq. (36) into
Eq. (27b) with n = 1 to find

�2t
dSð0ÞX 33

dx
ð1Þ þ 2

dSð1ÞX 33

dx
ð1Þ ¼ Bi2 2tSð0ÞX 33ð1Þ � 2Sð1ÞX 33ð1Þ

� �
ð39bÞ

dSð1ÞX 33

dx
ð1Þ þ Bi2Sð1ÞX 33ð1Þ ¼ t

dSð0ÞX 33

dx
ð1Þ þ Bi2Sð0ÞX 33ð1Þ

 !
ð39cÞ

Again the right side is seen to be zero when it is compared
with Eq. (35b). Hence

dSð1ÞX 33

dx
ð1Þ ¼ �Bi2Sð1ÞX 33ð1Þ ð40Þ

At this point the two boundary conditions are used, result-
ing in Eqs. (38) and (40). Use the general equation for S,
Eq. (20d), for i = 1 and XIJ = X33 to obtain

Sð1ÞX 33ðxÞ ¼ �IISð0ÞX 33ðxÞ þ Cð1ÞX 33;1xþ Cð1ÞX 33;2 ð41Þ

This equation is introduced into Eq. (38) to find

� dIISð0ÞX 33

dx
ð0Þ þ Cð1ÞX 33;1 ¼ Bi1ð�IISð0ÞX 33ð0Þ þ Cð1ÞX 33;2Þ ð42aÞ

The terms related to IIS need to be carefully examined. Re-
call the definition given by Eq. (20c) which when written
for this case becomes

IISð1ÞX 33ðxÞ �
Z x

x0¼0

Z x0

x00¼0

Sð0ÞX 33ðx00Þdx00 dx0 ð42bÞ

When the upper limit of the outer integration is set equal to
zero, this double integral is zero,

IISð1ÞX 33ð0Þ ¼ 0 ð42cÞ

which is valid for i = 1 and for i equal to all positive inte-
gers. Taking the first derivative with respect to x of Eq.
(42b) and using Liebnitz’ rule for differentiation of an inte-
gral yields
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dIISð1ÞX 33

dx
ðxÞ � d

dx

Z x

x0¼0

Z x0

x00¼0

Sð0ÞX 33ðx00Þdx00 dx0

¼
Z x

x00¼0

Sð0ÞX 33ðx00Þdx00 ¼ ISð0ÞX 33ðxÞ ð42dÞ

which is also equal to zero at x = 0. Hence, Eq. (42a) be-
comes simply

Cð1ÞX 33;1 ¼ Bi1Cð1ÞX 33;2 ð42eÞ

Now consider the boundary condition at x = 1 by intro-
ducing Eq. (41) into Eq. (40),

�ISð0ÞX 33ð1Þ þ Cð1ÞX 33;1 ¼ �Bi2ð�IISð0ÞX 33ð1Þ þ Cð1ÞX 33;1 þ Cð1ÞX 33;2Þ
ð43Þ

Two algebraic equations, Eqs. (42e) and (43), are available
for the two unknowns, Cð1ÞX 33;1 and Cð1ÞX 33;2. It is also true that
Eqs. (42e) and (43) apply for i = 2 and 3. Using the solu-
tion for the two unknowns and then introducing them back
into Eq. (41), (generalized for i = 1, 2 or 3) gives for the
X33B3n0T0 (n = 1, 2 or 3) series of S’s the recursion
relation,
Table 3
Algebraic forms for the SðiÞX 13ðxÞ and SðiÞX 23ðxÞ summations

Power variations are tn, (n = 0, 1, 2 and 3) for the surface temperature or heat
x = 1.
SðiÞX 33ðxÞ ¼ �IISði�1Þ
X 33 ðxÞ

þ Bi1xþ 1

Bi1 þ Bi2 þ Bi1Bi2

ISði�1Þ
X 33 ð1Þ þ Bi2IISði�1Þ

X 33 ð1Þ
h i

ð44Þ
This recursion relation is general and can be used to obtain
all the cases for XIJ, for I = 1, 2 or 3 and J = 1, 2 or 3, ex-
cept for I = J = 2. (However, the previously considered
X11, X12, X21 and X22 cases are tabulated in Table 2.)
For the boundary condition of the first kind, the Biot num-
ber is made to approach infinity; specifically, for I = 1,
Bi1 ?1 and for J = 1,Bi2 ?1. For the boundary condi-
tion of the second kind, the Biot number is set equal to zero.

More explicitly the recursion relation for the S series for
X13B3n0T0 (n = 1, 2, 3) is obtained by letting Bi1 ?1,

SðiÞX 13ðxÞ ¼ �IISði�1Þ
X 13 ðxÞ þ

x
Bi2 þ 1

ISði�1Þ
X 13 ð1Þ þ Bi2IISði�1Þ

X 13 ð1Þ
� �

ð45Þ
Detailed results are given in Table 3, second column. For
the X23B3n0T0 series of S’s, the recursion relation for
Bi1 ? 0 is (see Table 3, third column)

SðiÞX 23ðxÞ ¼ �IISði�1Þ
X 23 ðxÞ þ IISði�1Þ

X 23 ð1Þ þ
1

Bi2

ISði�1Þ
X 23 ð1Þ ð46Þ
flux at x = 0 with a homogeneous boundary condition of the third kind at
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The recursion relation for the X31B3n0T0 series of S’s is
(Bi2 ?1)

SðiÞX 31ðxÞ ¼ �IISði�1Þ
X 31 ðxÞ þ

Bi1xþ 1

Bi1 þ 1
IISði�1Þ

X 31 ð1Þ ð47Þ

For the X32B3n0T0 series of S’s, the recursion relation is
(Bi2 ? 0)

SðiÞX 32ðxÞ ¼ �IISði�1Þ
X 32 ðxÞ þ

Bi1xþ 1

Bi1

ISði�1Þ
X 32 ð1Þ ð48Þ

The expression for SðiÞX 23ðxÞ given by Eq. (46) is developed
starting from Eq. (33). Likewise, Eq. (45) for SðiÞX 13ðxÞ is
developed from (31b) as are SðiÞX 31ðxÞ and SðiÞX 32ðxÞ starting
with Eqs. (32) and (30b), respectively.

5. Numerical values, graphical results and insights

Numerical values are displayed in Table 4 for the case of
a cubic variation of the surface heat flux. Results are given
for the X21B3n0T0, X23B3n0T0 (with Bi2 = 1) and
X22B3n0T0 cases, each with n = 3. Sufficient numbers of
terms are used in the time-dependent, infinite series to
obtain eight decimal place accuracy; the largest number of
terms is for the smallest time considered which is t = 0.05.
This small dimensionless time is chosen for several reasons.
Significant penetration of the temperature does not reach
the x = 1 side at this time and because the only difference
between these cases is the boundary condition at the
x = 1, the numerical values of these temperatures should
be the same, as they are. Another important reason is that
a temperatures of zero at x = 0.75 is useful in demonstrat-
ing intrinsic verification [8]. Consider Eq. (25c) which is
for the X22B3n0T0 (n = 2) case. For t 6 0.05 and at
x P 0.75 and larger, the temperature is zero (to eight deci-
mal places), but none of the terms in Eq. (25c) is zero.
Hence, there must be precise canceling of terms, which is
an indication of intrinsic verification [8]. In general, close
subtraction of two large numbers is inadvisable, but for
exact solutions it may help to amplify (and thus reveal)
errors in the equations or the programming of them.

For small dimensionless times, indicated by incomplete
temperature penetration, the solution reduces to that given
Table 4
Numerical values for cubic (n = 3) variations, X21B3n0T0, X23B3n0T0 (with

Case t # terms T(0, t) T

X21 0.05 4 0.00001442 0.
X23 0.05 4 0.00001442 0.
X22 0.05 4 0.00001442 0.
X21 0.25 2 0.00402961 0.
X23 0.25 2 0.00403016 0.
X22 0.25 2 0.00403024 0.
X21 1.00 1 0.50364687 0.
X23 1.00 1 0.52128516 0.
X22 1.00 1 0.52809530 0.
X21 2.00 1 5.27851892 3.
X23 2.00 1 5.98720896 4.
X22 2.00 1 6.42412698 4.
for a semi-infinite body. For example, the surface temper-
ature for a heat flux varying as t3 obtained from Eq. (1b) is

T ð3ÞX 20ð0; tÞ ¼
32

35
ffiffiffi
p
p t7=2 ð49Þ

which gives the values of 0.00001442 and 0.00402993 for
t = 0.05 and 0.25, respectively. The first number is exactly
the same as in Table 4; the second number differs only in
the last two digits for the X23B3n0T0 (n = 3) case. Consis-
tency with results for a semi-infinite body for small dimen-
sionless time is another indication of intrinsic verification [8].

Table 4 also shows that the X21B3n0T0 (n = 3) and
X22B3n0T0 (n = 3) cases span the extremes for the
X23B3n0T0 (n = 3) for Biot numbers from zero to infinity.
The curves for this case would be between the X21B3n0T0
(n = 3) and X22B3n0T0 (n = 3) cases, which are shown in
Fig. 1, but the X23B3n0T0 (n = 3) curve is not shown
because it is obscured by the forgoing curves. Cases for
n = 0 and 1 are also shown in Fig. 1.

The S terms in Table 3 for the X13 case includes coeffi-
cients for the Bi2 = 0 and Bi2 =1 cases. For the first of
B2 = 1) and X22B3n0T0 cases

(0.25, t) T(0.5, t) T(0.75, t) T(1, t)

00000139 0.00000009 0.00000000 0.00000000
00000139 0.00000009 0.00000000 0.00000000
00000139 0.00000009 0.00000000 0.00000000
00147840 0.00050370 0.00014860 0.00000000
00147975 0.00050930 0.00017068 0.00008019
00147997 0.00051025 0.00017466 0.00009550
30059855 0.16708016 0.07420347 0.00000000
32153035 0.19883803 0.12734487 0.09077119
32975886 0.21179188 0.14985757 0.13062493
52362358 2.15087451 1.01776124 0.00000000
28686694 3.08400770 2.25526434 1.70978408
76242996 3.68087050 3.07271431 2.87665675



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

S
ca

le
d 

S
(i) X

12
an

d 
S

(i) X
12

S(0)
X12

S(1)
X12

S(2)
X12

S(3)
X12

S(0)
X21

S(1)
X21

S(2)
X21

S(3)
X21

Fig. 3. Scaled values for SðiÞX 12ðxÞ and SðiÞX 21ðxÞ for i = 0 (denoted by a d),
i = 1 (denoted by a +), i = 2 (denoted by a continuous line) and i = 3
(denoted by a s). The scaling factors for SX12,i(x) for i = 0, 1, 2 and 3 are
0.5, 0.25, 0.1042 and 0.0424, respectively. The scaling factors for SX21,i(x)
for i = 0, 1, 2 and 3 are 0.5, 0.1667, 0.0667 and 0.0270, respectively.

2564 J.V. Beck et al. / International Journal of Heat and Mass Transfer 51 (2008) 2553–2565
these, the case becomes X12 and the equations collapse to
those given in Table 2, third column and the other case
becomes X11 given in the second column of Table 2.

It is instructive to examine plots of the S functions
because they determine the variation with x of temperature
as t becomes large. Furthermore, insight can be gained by

examining them. See Fig. 2 for scaled values for SðiÞX 11ðxÞ and
SðiÞX 22ðxÞ for i = 0, 1, 2 and 3. Scaling allows the values to be
conveniently displayed in the same plot and provides
insight for a larger set of problems. The physical values
of S are found by multiplying S by the scaling coefficients
given in the heading of Fig. 2. The i = 0 curves are notice-
ably different in shape from the i = 1, 2 and 3 curves, with
the latter two being very nearly the same; see, for example,
the scaled SðiÞX 11ðxÞ curves. For i = 0, the scaled Sð0ÞX 11ðxÞ,
shown by dots, decreases linearly from one to zero while
the other S-curves approach what seems to be part of a sine
curve. In fact, the scaled SðiÞX 11ðxÞ curves approach sin(px) as
i increases.

Fig. 3 shows the scaled SðiÞX 12ðxÞ and SðiÞX 21ðxÞ curves.
Notice that the scaled Sð0ÞX 12ðxÞ, denoted by dots, has a con-
stant value of unity. The previously observed behavior of
approaching common results is seen for increasing i. This
hints that the S-series can be approximated by just a few
terms when i increases to 2 or 3.

The algebraic forms tend to become unwieldy as i

increases, particularly for boundary conditions of the third
kind, as indicated in Table 3 for i = 2 and 3. However, at
the same time, the required number of terms in the quasi-
steady summations is reduced. An alternate way to evalu-
ate the temperature solution for the X23B3n0T0 (n = 3)
problem is to use algebraic identities for i = 0 and 1 and
the series representation for i = 2 and 3, as in
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T ð3ÞX 23ðx; tÞ ¼ 2t3Sð0ÞX 23ðxÞ � 6t2Sð1ÞX 23ðxÞ

þ 12
XM

m¼1

ðb2
X 23;m þ Bi2

2Þ cos bX 23;mx
� 	

b6
X 23;mðb

2
X 23;m þ Bi2

2 þ Bi2Þ

( )

� t � 1

b2
X 23;m

ð1� e�b2
X 23;mtÞ

" #
ð50Þ

where Sð0ÞX 23ðxÞ and Sð1ÞX 23ðxÞ are given in Table 3, column 3.
The fifth column, fifth second row of Table 1 lists bX23,m.
The number of terms in the summation, M, need not be
large in Eq. (50). For example, for Bi2 = 1 and t = 0.25,
the temperature at x = 0 is 0.0028, 0.00399, 0.004025,
0.004029 and 0.00403015, for M = 1, 2, 3, 4 and 10, respec-
tively. A more accurate value using the algebraic values of
SðiÞX 23ðxÞ for i = 0 to 3 is given in Table 2 as 0.00403016, for
which only two terms were needed in its summation. How-
ever, the summation given by Eq. (50) may be easier to use,
particularly if only 1% accuracy is needed since only two
terms are then needed. For larger values of t, even fewer
terms are needed. For x = 0, t = 2 and Bi2 = 1, the com-
puted temperatures are 5.97, 5.987, 5.98717, 5.987201 and
5.98720889 for M = 1, 2, 3, 4 and 10, respectively. The last
two digits are 96 in Table 4 instead of 89 in the last number
just given. Only one term is needed in the series in Eq. (50)
to obtain accuracies of better than 0.3% for x = 0 and t val-
ues equal to or greater than 2. As a consequence of the ra-
pid convergence of Eq. (50), rarely would more than 10
terms be needed in the summation.

6. Summary and conclusions

Solutions are given for the temperature response in finite
plates subject to time varying boundary conditions propor-
tional to tn for n = 0, 1, 2, and 3 at the x = 0 surface. The
boundary condition at x = 1 is homogeneous although this
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can be changed by a simple coordinate transformation.
Nine combinations of boundary conditions, either first,
second and third kind at each surface, are examined. A sys-
tematic protocol is given for developing algebraic forms to
replace infinite series, thereby speeding computation of the
temperature profile. The protocol yields steady-state terms,
terms increasing as a power of time and exponentially
decaying terms. For the constant surface conditions
(n = 0), and even for the linear-in-time conditions (n = 1),
series summations may converge slowly, particularly when
the surface heat flux is needed. In contrast, the algebraic
forms developed here for n = 0 and 1 contain only a few,
easily evaluated terms. The larger powers, such as n = 2
and 3, introduce rapidly converging summations for
Sð2ÞXIJ ðxÞ and Sð3ÞXIJ ðxÞ. Consequently, using algebraic forms

for Sð0ÞXIJ ðxÞ and Sð1ÞXIJ ðxÞ and summation forms for Sð2ÞXIJ ðxÞ
and Sð3ÞXIJ ðxÞ is an efficient method of numerical evaluation
for T(x,t). See Eq. (50).

Others have sought to speed convergence, such as by
Euler’s method [2]. Texts of general methods to speed con-
vergence may be consulted as well (e.g, Knopp [20] and Jol-
ley [21]). The method developed here, however, seeks to
replace infinite summations with equivalent algebraic
expressions.

The solutions have intrinsic value because they have
potential for unsteady boundary conditions approximated
using splines. The solutions contain the possibility of
intrinsic verification. The method given herein is suffi-
ciently general that it can be extended to other 1D geome-
tries in heat conduction, such as to radial and spherical
coordinates.
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Appendix A. Series relations for S
ðiÞ
XIJðxÞ, I and J = 1 and 2

The relations listed below are re-arrangements of Eqs.
(19:6:6), (19:6:7), (20:6:5) and (20:6:6) in Spanier and Old-
ham [18]. See also Eqs. (23.1.17) and (23.1.18) in Abramo-
witz and Stegun [19].

SðiÞX 22ðxÞ ¼
X1
m¼1

cos mpxð Þ
ðmpÞ2ðiþ1Þ ¼

ð�1Þi22iþ1

ð2ðiþ 1ÞÞ! B2ðiþ1Þ x=2ð Þ ðA:1Þ

i ¼ 0; 1; 2; . . . ; 0 6 x 6 2

SðiÞX 11ðxÞ ¼
X1
m¼1

sinðmpxÞ
ðmpÞ2iþ1

¼ ð�1Þiþ1 22i

ð2iþ 1Þ! B2iþ1ðx=2Þ ðA:2Þ

i ¼ 0 : 0 < x < 2; i > 0 : 0 6 x 6 2

SðiÞX 21ðxÞ ¼
X1
m¼1

cosððm� 1=2ÞpxÞ
ððm� 1=2ÞpÞ2ðiþ1Þ ¼ ð�1Þiþ1 22i

ð2iþ 1Þ!E2iþ1ðx=2Þ

i¼ 0;1;2;3; ::: 06 x6 2 ðA:3Þ
SðiÞX 12ðxÞ ¼
X1
m¼1

sinððm� 1=2ÞpxÞ
ððm� 1=2ÞpÞ2iþ1

¼ ð�1Þi 22i�1

ð2iÞ! E2iðx=2Þ

i ¼ 0 : 0 < x < 2; i > 0 : 0 6 x 6 2 ðA:4Þ

The Bi(x/2) symbols are the Bernoulli polynomials, the first
three of which are 1, x/2 – 1/2, and (x/2)2 – x/2 + 1/6. The
Ei(x/2) symbols are called Euler polynomials, the first three
of which are 1, x/2 – 1/2, and (x/2)2 – x/2.
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